Attractors for nonautonomous 2D Navier–Stokes equations with less regular normal forces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attractors for Nonautonomous Parabolic Equations without Uniqueness

Using the theory of uniform global attractors of multivalued semiprocesses, we prove the existence of a uniform global attractor for a nonautonomous semilinear degenerate parabolic equation in which the conditions imposed on the nonlinearity provide the global existence of a weak solution, but not uniqueness. The Kneser property of solutions is also studied, and as a result we obtain the connec...

متن کامل

Pullback attractors of nonautonomous reaction–diffusion equations

In this paper, firstly we introduce the concept of norm-to-weak continuous cocycle in Banach space and give a technical method to verify this kind of continuity, then we obtain some abstract results for the existence of pullback attractors about this kind of cocycle, using the measure of noncompactness. As an application, we prove the existence of pullback attractors in H 1 0 of the cocycle ass...

متن کامل

Finite Dimensional Uniform Attractors for the Nonautonomous Camassa-Holm Equations

and Applied Analysis 3 and in H1 Ω , respectively, observe that H⊥, the orthogonal complement of H in L2 Ω , is {∇p : p ∈ H1 Ω } cf. 11 or 12 . ii We denote P : L2 Ω 3 → H the L2 orthogonal projection, usually referred as Helmholtz-Leray projector, and by A −PΔ the Stokes operator with domain D A H2 Ω 3 ∩ V . Notice that in the case of periodic boundary condition, A −Δ|D A is a selfadjoint posi...

متن کامل

Lyapunov Functions for Cocycle Attractors in Nonautonomous Diierence Equations

The construction of a Lyapunov function characterizing the pullback attraction of a cocycle attractor of a nonautonomous discrete time dynamical system involving Lipschitz continuous mappings is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2006

ISSN: 0022-0396

DOI: 10.1016/j.jde.2006.07.009